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LMSP, Dépt. de Physique, FST, B.P. 509, Boutalamine, Errachidia, Morocco

Received 19 December 2003 / Received in final form 15 April 2004
Published online 21 October 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. In this paper, we study numerically the influence of aggressive driving on the properties of the
stochastic Nagel-Schreckenberg model, such as the traffic flow and the probability of car accidents. Hence,
we find that these properties depend enormously on both the density ρ and the fraction f of aggressive
drivers. In addition, by studying the spatio-temporal organization of the vehicles, we show that at very
low density, the traffic state transits from “ordinary” free traffic to “queueing” phase when we increase
the fraction f . At relatively high density, the transition from congested traffic to queueing phase may also
occur.

PACS. 89.40.-a Transportation – 02.60.Cb Numerical simulation; solution of equations – 45.70.Vn
Granular models of complex systems; traffic flow – 89.75.Fb Structures and organization in complex
systems

1 Introduction

Recently, the phenomenon of aggressive driving has at-
tracted public interest because it is considered as one of
the major causes of crashes. In general, aggressive drivers
tend to exceed safe speed limits, cut off other drivers,
force their way ahead and follow too closely their pre-
decessors. These two last kinds of driving are generally
the result of accelerating very quickly and seldom slowing
down. It is important to note also that aggressive drivers
are not reporting exceeding the maximal speed limit, but
rather exceeding the limit which they perceive to be safe
on a given road. Until now, there has been little physics
research on aggressive driving behavior. The purpose of
this paper is then to give further insight into aggressive
driving and its influence on the properties of a stochas-
tic traffic flow model. We shall use a basic cellular au-
tomaton (CA) model that describes single-lane traffic flow;
that is the Nagel-Schreckenberg (NS) model [1]. Under the
NS model, different traffic features have been investigated
(see [2,3] for reviews): the emergent traffic jams [4], the
spatio-temporal organization of vehicles [5,6], the occur-
rence of car accidents [11,16], etc.

In earlier studies of the disorder asymmetric exclusion
process “ASEP” (by Krug and Ferrari [7] and Evans [8])
and as well as the NS model with particle-wise disorder [9],
it was shown that these models can exhibit the formation
of platoons of fast particles behind the slow ones. In con-
trast to the models with one type of particle, the quenched
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randomness in the random braking in the NS model (or
quenched particle-hopping rates in ASEP) can lead to the
formation of platoons at low-density rather than at a high
density of vehicles. In such disorder models, the conditions
which can lead to the formation of platoons are (a) slow
particles are sufficiently rare and (b) if the density of ve-
hicles is sufficiently low (for more details see [2]). In this
paper, we shall study the effect of varying the fraction of
aggressive drivers on the traffic flow, on the probability of
car accidents as well as on the traffic states of the system.

The paper is organized as follows. In Section 2, we
define the model. In Section 3, the results of computer
simulations are presented. We study the influence of ag-
gressive drivers on the traffic flow. We investigate also the
probability of car accidents in order to achieve how can
aggressive drivers be dangerous on the roads. A detailed
description of the spatio-temporal organization of the ve-
hicles for several densities and different fractions of ag-
gressive drivers is also presented. In Section 4, we present
some discussions of our results. Finally, we conclude with
a summary in Section 5.

2 Definition of the model

The NS model is a probabilistic CA of traffic flow on a
one-lane roadway. It consists of N cars moving on a one-
dimensional lattice of L cells with periodic boundary con-
ditions (the number of vehicles is conserved). Each cell is
either empty, or occupied by just one vehicle with veloc-
ity v = 1, 2, ..., vmax. We denote by x (k, t) and v(k, t) the
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position and the velocity of the kth car at time t respec-
tively. The number of empty cells in front of the kth car is
denoted by g (k, t) = x (k + 1, t)− x (k, t)− 1 and called
hereafter as the gap. Space and time are discrete. At each
discrete time-step t → t + 1 the system update is per-
formed in parallel for all cars according to the following
four subrules:

R1: Acceleration: v(k, t+ 1
3 )← min (v(k, t) + a, vmax).

R2: Slowing down (due to other cars): v(k, t + 2
3 ) ←

min
(
v(k, t + 1

3 ), g(k, t)
)
. R3: Randomization: v(k, t +

1)← max
(
v(k, t + 2

3 )− 1, 0
)

with probability p. R4: Mo-
tion: the car is moved forward according to its new veloc-
ity, x(k, t + 1)← x(k, t) + v(k, t + 1).

The NS model is fairly simple (in the standard
NS model a = 1), which nevertheless has been shown to be
able to reproduce real-life traffic phenomena for highways
such as the spontaneous formation of jams.

As in reference [9], we shall characterize a careful driver
by lower acceleration capability (a1 = 1) and a higher
value of the deceleration probability p1; these drivers tend
to brake more often and accelerate slowly. In addition,
aggressive drivers who accelerate quickly correspond not
only to a smaller value of p2 [9], but also to a higher ac-
celeration capability (a2 > 1).

Recently, CA models have been extended to study the
occurrence of car accidents [11–16]. Boccara et al. [11]
were the first authors to propose conditions for car acci-
dents to occur in the deterministic NS model. The first
condition is that the number of empty cells in front of
the car (gap) is smaller than the speed limit; the second
condition is that the car ahead is moving; and the last con-
dition is that the moving car ahead is suddenly stopped
at the next time step. Using these conditions, the exact
results of the probability of a car accident are obtained
in special cases [12,13]. General numerical results for the
probability of car accidents are reported in the nondeter-
ministic NS model [14]. In the Fukui-Ishibashi model [10],
the probability for an accident to occur is found to be pro-
portional to the product of the fraction of stopped cars
and the traffic flow [15].

Very recently, new conditions for the occurrence of car
accidents based on the delayed reaction time of the care-
less driver were established [16]. The characteristic of this
careless driver is that when the car ahead is moving, he ex-
pects it to move again at the next time step, and therefore
his braking manoeuvre is done only after a delayed reac-
tion time τ . The dangerous situation (DS) between two
neighbourhood cars k and k + 1 will exist at time t + 1,
if the following events occur. (i): the distance to cover
by the kth car during the time τ is superior to its gap.
(ii): the (k+1)th car is moving at time t. (iii): the (k+1)th
car suddenly stops at the next time step. These three con-
ditions could be reduced to simple expressions as:

i) τv (k, t) > g(k, t), ii) v (k + 1, t) > 0,

iii) v(k + 1, t + 1) = 0. (1)

We notice that an aggressive as well as a careful drivers
can cause accident (with probability p′) if the three pre-
vious conditions occur.

The car accidents caused by an abrupt deceleration
can also be derived. Suppose that at time t the car ahead
with speed v (k + 1, t) does an abrupt deceleration. At
time t+1 its velocity will be reduced to v (k + 1, t + 1). If
the distance covered during the delayed reaction time τ of
the car following is enough to reach the next time position
of the car ahead, then a DS occurs on the road. Hence,
the conditions for the occurrence of DS with respect to
abrupt deceleration of the car ahead are as follows.

i) τv (k, t) > g(k, t) + v(k + 1, t + 1),
ii) v(k + 1, t)− v(k + 1, t + 1) ≥ vd. (2)

If the above two conditions are satisfied then a car
accident will occur at time t + 1 with probability p′. The
parameter vd is the deceleration limit beyond which a risk
of the occurrence of DS exists. We should point out that
the DS conditions of equation (2) should reduce to the
conditions in equation (1) if v(k+1, t+1) = 0 and vd = 1.

3 Simulations and results

We simulate one-lane of traffic using the NS model with a
one-dimensional lattice of length L = 104 sites with closed
boundary conditions. The density ρ is defined as ρ = N/L,
where N is the number of cars. The model parameters are
given by the maximal velocity of the cars vmax = 5, the
braking probability of careful drivers p1 = 0.5, the braking
probability of aggressive drivers p2 = 0.1. The acceleration
of careful drivers is given by a1 = 1 whereas that of ag-
gressive drivers is chosen as a2 = 2. The parameter f will
designate the fraction of aggressive drivers among the ve-
hicles. Finally, we shall assume that the delayed reaction
time of the careless drivers is given by τ = 1s and we
choose for the deceleration limit the value vd = 2.

3.1 Traffic flow and probability of car accidents

3.1.1 Traffic flow

Among the interesting physical properties in traffic sys-
tems is the flow J which measures the number of vehicles
crossing a detector site per unit time. From Figure 1, we
show the dependence of the traffic flow J on the density of
vehicles ρ, for different values of the fraction f of aggres-
sive drivers. For each fraction f of aggressive drivers, the
fundamental diagram is composed of two branches. The
increasing branch is the characteristic of the laminar traf-
fic where the vehicles are in a free flow regime. The second
branch which is indicated by a decreasing traffic flow de-
scribes the congested traffic. These two different regimes
are separated by a “critical density” ρc(f) which is an im-
portant characteristic of the fundamental diagrams. This
can evaluate the transit capacity of the vehicular traffic.
We point out that we have put the words, critical density,
in quotation marks because there is no consensus con-
cerning the existence of phase transition in the case of
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Fig. 1. The dependence of the traffic flow on the density of vehicles ρ, for different values of the fraction f of aggressive drivers.

Fig. 2. The dependence of the traffic flow on the fraction f of aggressive drivers, for different vehicle densities ρ.

the nondeterministic NS model [17-20]. However, in the
deterministic case of the NS model, ρc = 1/(vmax + 1)
is a critical density which corresponds to the transition
from a free-flow regime to a congested regime where start
and stop waves dominate the dynamics of the system.
This transition is usually viewed as a second-order phase
transition [21].

The increasing of ρc(f) with the fraction of aggressive
drivers indicates that the free flow regime is more and
more broadened as the fraction of aggressive drivers is
increased. Let us first study the two limits of the density,
ρ → 0 and ρ → 1. At very low density, we observe in the
fundamental diagram, that all the slopes are identical for
f < 1. In fact, in the laminar phase, the velocity of the

vehicles is given by vmax − p1, i.e., J1 = ρ(vmax − p1),
∀f < 1. The behavior of the system is determined by
the slow vehicles (the careful drivers). One can observe
also from Figure 1 that the fundamental diagram has a
different slope when f = 1 than those for f < 1. Indeed,
in the case f = 1 no slow vehicles exist in the circuit and
the flow is given by J2 = ρ(vmax − p2) which is superior
than J1, ∀f < 1. In the other limit where ρ → 1, the
asymptotic velocity of vehicles is given by (1−f)(1−p1)+
f(1− p2). This should explain the fact that the slopes in
the fundamental diagram increases with the fraction f .

To investigate more clearly the influence of aggres-
sive drivers on the traffic flow we plotted in Figure 2,
the dependence of J on the fraction f for several fixed
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Fig. 3. The probability for an accident to occur Pac (scaled by p′) caused by an abrupt deceleration as a function of density ρ,
for different values of the fraction f of aggressive drivers.

vehicle densities ρ. We can distinguish three different re-
gions where different behaviors of the properties of the
system can occur: region 1 where ρ < ρc(0), region 2 where
ρc(0) < ρ < ρc(1) and region 3 where ρ > ρc(1). The nu-
merical values of the “critical densities” in the pure cases
are ρc(0) ≈ 0.077 and ρc(1) ≈ 0.165.

For fixed very low density (region 1) and for the pure
case f = 0, the traffic state is laminar and the veloc-
ity of vehicles is given by vmax − p1. The traffic flow J
for the disorder case 0 < f < 1 remains unchanged; i.e.
J = ρ(vmax − p1). For relatively high density (region 2)
and f = 0, a jamming state takes place where clusters of
stopped cars (jams) appear in the system. With increas-
ing f , the traffic flow J increases until some limit f0 be-
yond which J becomes constant (J = ρ(vmax − p1), see
the inset of Fig. 2). Thus, one can expect that a transi-
tion from jamming state to laminar phase can occur at
f = f0. The limit f0 increases with the density until it
becomes equal to 1 for exactly ρ = ρc(1). For example, we
found f0 ≈ 0.24 for ρ = 0.08 and f0 ≈ 0.58 for ρ = 0.10.
We remark that, in the pure case f = 1 the flow increases
abruptly. As we have explained before, the flow in the pure
case f = 1 is superior to that of the disorder case. In fact,
the behavior of the system is determined by the slow cars
even if only one slow car is present in the circuit. For high
density (region 3), the system is congested at all values of
the fraction f . Thus, the monotonous increase of the flow
with f means that jams have a tendency to dissolve with
the presence of the aggressive drivers; but never die out.

3.1.2 Probability of car accidents

The next step is to examine the consequences of the ag-
gressive driving in terms of the probability of crashes. In
Figure 3, we plotted the probability per vehicle and per

time step for an accident to occur Pac caused by an abrupt
deceleration. As Pac is proportional to the probability p′,
we shall study the quantity Pac/p′ and leave the probabil-
ity p′ unspecified. For each fraction f of aggressive drivers
the dependence of Pac on the vehicle density is described
as follows. At low densities, the car accidents will not occur
until the density reaches the “critical density” ρc(f). This
is because in the free flow region (ρ < ρc(f)) the mean
gap between cars is superior to the maximal speed vmax

and thus no cars decelerated abruptly. For a density ρ
above ρc(f), Pac increases with the density, reaches a max-
imum, and then decreases with further density. In the very
high density region, Pac decreases rapidly and vanishes be-
yond a density limit ρ

h
(f). In the disorder case, the effect

of aggressive drivers on the risk of accident is noticeable
at high densities. That is, an increase in aggressive driving
will result in an increase of risk of accidents.

In Figure 4, we plotted the probability of car accidents,
caused by an abrupt deceleration of the vehicles, as a func-
tion of the fraction f of aggressive drivers for several fixed
vehicle densities ρ. At very low density (region 1), no ac-
cident can occur until the fraction f exceeds a threshold
value f1. For example, we found f1 ≈ 0.58 for ρ = 0.04.
At relatively high density (region 2), an interesting behav-
ior of the variation of the probability of a car accident is
found. An increase of the fraction f of aggressive drivers
leads to an noticeable increasing of the probability of car
accident. This increase ends with a local maximum of Pac

at certain value f2 which increases with the density. For
example, we found f2 ≈ 0.04 for ρ = 0.08 and f2 ≈ 0.24
for ρ = 0.10. With further increase of aggressive drivers,
the probability Pac decreases until certain value f1 where
a minimal possible probability of car accident can exist.
The values of f1 are found to increase with the density
and we have for example, f1 ≈ 0.60 for ρ = 0.08 and
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Fig. 4. The probability of car accidents, caused by abrupt deceleration of the vehicles, as a function of the fraction f of
aggressive drivers for different values of the vehicle density ρ.

Fig. 5. The probability of car accidents, caused by stopped vehicles, as a function of the fraction f of aggressive drivers for
different values of the vehicle density ρ.

f1 ≈ 0.70 for ρ = 0.10. Furthermore, just above f1, a fast
increase of the risk of accidents occurs when increasing
the fraction f . As for the traffic flow, a discontinuity of
the variation of Pac is found in the vicinity of f = 1. In
fact, Pac is largely superior to zero for f � 1 whereas it
vanishes at exactly f = 1. For the high density region 3,
Pac increases monotonously with f .

Finally, we show in Figure 5, the variation with density
of the probability of car accidents caused by stopped vehi-
cles (Eq. (1)). This is quite similar to that corresponding
to an abrupt deceleration (Eq. (2)). The main difference
is that an introduction of few aggressive drivers may de-

crease the risk of accident caused by stopped vehicles, at
very low densities. This is not the case when we consider
only the accident caused by abrupt decelerations when
a few aggressive drivers may increase the probability of
accident.

3.2 Spatio-temporal organization of vehicles

Recent empirical investigations reveal that the density de-
pendence of traffic flow alone, cannot give the whole infor-
mation on the traffic system [22]. To get information on



426 The European Physical Journal B

(a)

(b)

(c)

(d)

Fig. 6. Space-time diagram of the model with size L = 500 for ρ = 0.04. (a) f = 0, (b) f = 0.5, (c) f = 0.9 and (d) f = 1.0.
The horizontal direction is space and the vertical (down) is (increasing) time.

the microscopic structure of traffic streams, one can de-
termine the spatio-temporal organization of the vehicles
in the highway [5,6]. This microscopic investigation can
be obtained by plotting the space-time diagram and mea-
surement of the distance and time headways. The distance
headway (DH) is defined as the distance from a selected
point on a car to the same point on the following car.
The time headway (TH) is defined as the time interval
between the departures (or the arrivals) of two successive
cars recorded by a detector placed at fixed position on the
highway. We shall confined this study to three different
densities ρ = 0.04, ρ = 0.10 and ρ = 0.24 which corre-
spond respectively to regions 1, 2 and 3.

3.2.1 Space-time diagrams

For a very low density (ρ = 0.04), the space-time of Fig-
ure 6a corresponding to the pure case f = 0 shows a

laminar traffic, in which cars move freely. For a higher frac-
tion f of aggressive drivers, the system displays the queue-
ing of vehicles (Figs. 6b–c). This self-organization into a
queueing phase was first observed by Ktitarev et al. [9]
where a power-law decay distribution of gaps is found for
some critical density. Let us note that the queue is in-
creasingly long when we increase the fraction of aggressive
drivers. Nevertheless, for f = 1, i.e. all the vehicles are
aggressive, the space-time of Figure 6d indicates that no
queueing phase is present and the traffic is simply laminar.
The reason for this is the absence of slow vehicles, since a
queueing behavior is always produced by platoons of fast
vehicles (aggressive) behind the slow vehicle (careful).

For a higher density (ρ = 0.10), the space-time of Fig-
ure 7a corresponding to f = 0 shows a jamming state
where there coexist free flow regions and jams. With an
increasing fraction f , the traffic state changes from jam-
ming to free flow traffic (Fig. 7b). Moreover, a queueing
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(b)

(c)

(d)

Fig. 7. Space-time diagram of the model with size L = 500 for ρ = 0.10. (a) f = 0, (b) f = 0.5, (c) f = 0.9 and (d) f = 1.0.

state may also appear if one increases enough the num-
ber of aggressive drivers (Fig. 7c). As before, when there
are no careful drivers (f = 1), the state becomes free flow
traffic (Fig. 7d).

For high density (ρ = 0.24), start-stop waves dominate
the system at all values of the fraction of aggressive drivers
(Figs. 8a–d). However, we can observe that the density of
the cluster jams decreases as the fraction f increases.

3.2.2 Distance headway distributions

Next, we shall examine the distance headway distributions
of the vehicles for different fractions of aggressive drivers.
For a very low density (ρ = 0.04) and f = 0, smaller DH
are strongly suppressed and the DH distribution displays a
maximum which is considered as the most probable DH in
the free regime. This maximum is located at d ≈ 10; thus

indicating that the drivers tend to drive with larger DH
in the free flow regime. As f exceeds the vanishing value,
the DH distribution exhibits a peak at d1 ≈ (vmax + 1)
(Fig. 9a). This peak becomes more and more pronounced
with an increasing fraction f . For f � 1, this peak ap-
proaches the Dirac function δ(τ − d1). Therefore, the ap-
pearance of higher peaks in the DH distribution for large f
adequately proves the existence of the queueing phase.
Moreover, the increase of the height of the peaks with f
indicates that the size of the platoons of aggressive drivers
increases, as it was shown from Figures 6b and 6c. Note
that the DH distribution of the pure case f = 1 resembles
that of the other pure case f = 0 but not the disorder case
0 < f < 1. Yet, platoons might not form at all in the case
where f = 0 or f = 1 since no different kind of vehicles
exist.

For a higher density (ρ = 0.10), the distance head-
way distribution depends enormously on the fraction of
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Fig. 8. Space-time diagram of the model with size L = 500 for ρ = 0.24. (a) f = 0, (b) f = 0.5, (c) f = 0.9 and (d) f = 1.0.

aggressive drivers (Fig. 9b). Hence, when f = 0, we ob-
serve clearly that the distribution presents two peaks. The
first peak is located at d = 1 which represents vehicles in
jams and the second at large DH which represents vehi-
cles in free flow regime. Thus, there is a coexistence of
jams and free flow. As we increase the fraction of the
aggressive drivers, the height of the first peak decreases
more and more until it disappears whereas that of the
other peak increases more and more until becomes more
pronounced. This behavior confirms well that a transition
from a jamming to a queueing state may occur if one in-
creases enough the fraction of aggressive drivers. Finally,
for f = 1, the DH distribution displays the character-
istic of free flow regime because the density of vehicles
(ρ = 0.10) is lower than ρc(1).

For high density (ρ = 0.24), only the first peak re-
mains and high Distance-headways are suppressed when
the fraction f is zero; showing therefore that a congested

traffic takes place where a start-stop regime dominates the
system (Fig. 9c). Moreover, the second peak of higher DH
reappears as the fraction of aggressive drivers becomes
important. Indeed, the height of the first peak decreases
whereas that of the second peak increases when f in-
creases; leading therefore to an increase in the traffic flow.

3.2.3 Time headway distributions

For the very low density (ρ = 0.04), we plotted in Fig-
ure 10a the TH distribution of the vehicles for differ-
ent fractions of aggressive drivers. Hence, for f = 0 the
TH distributions exhibit a broader peak structure at TH,
τ = 2s. The broadness of the peak indicates that a large
range of DH can be taken by cars driving at v ≈ vmax.
This is the characteristic of the free flow regime with a
higher randomization p. When the fraction f exceeds some
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(a) (b)

(c)

Fig. 9. Distance headway distributions of the vehicles for different fractions of aggressive drivers. (a) ρ = 0.04, (b) ρ = 0.10
and (c) ρ = 0.24.

threshold value ft, the peaks in the TH distributions will
be located at τ = 1s. These short time-headways corre-
spond to platoons of some vehicles travelling with a rather
high speed. Moreover, as for the DH, the height of the
peaks increases with f, which justifies again the increas-
ing size of the platoons. Finally, the TH distribution of
the case where f = 1 exhibits a peak at τ = 2s; indicating
that no queueing behavior exists.

In congested traffic and for high values of f , the short
time-headways still remain, showing the presence of pla-
toons but the asymptotic behavior is rather increasingly
wide; reflecting the dynamics of vehicles inside the jams.
Moreover, we can observe from Figures 10b and 10c, that
the threshold limit ft decreases with the increasing density
of vehicles. The reason is the limitation of the highway ca-
pacity of finite length caused by high densities of vehicles.

4 Discussion

All the above results concerning the traffic flow and the
probability of car accidents could be well understood after
studying the spatio-temporal organization of the vehicles.
In contrast to the disorder case 0 < f < 1, the stationary
states of the pure cases f = 0 and f = 1 don’t present
the formation of platoons since a different kind of vehicles
does not exist. Because of the randomization step R3, the
dynamics of both the pure models f = 0 and f = 1 are not
substantially different. In contrast to the Fukui-Ishibashi
model [10], one finds spontaneous jam formation in the
two pure models (see [23] where a high acceleration variant
NS model with a = vmax is proposed).

The behavior of the whole system can be distin-
guished according to three different regions of the density.
Thus, we find that at very low density (region 1), the
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(a) (b)

(c)

Fig. 10. Time headway distributions of the vehicles for different fractions of aggressive drivers. (a) ρ = 0.04, (b) ρ = 0.10 and
(c) ρ = 0.24.

transition from “ordinary” free flow to the “queueing”
phase occurs when we increase the fraction of aggressive
drivers. This “queueing” phase is characterized by the for-
mation of platoons of aggressive drivers behind the care-
ful ones. The aggressive drivers are driving with maxi-
mal speeds, short time headways and keeping the distance
headways d ≈ (vmax + 1). However, these reorganizations
of vehicles in platoons have no effect on the traffic flow.
The behavior of the system is determined by the slow cars.
It is important to note also, that the increased accelera-
tion capability attributed to aggressive drivers does not
cause any formation of platoons but gives only quantita-
tive changes to the properties of the traffic model such as
the enhancement of the flow. The platoon reorganization
of the vehicles can lead to an increase of the risk of acci-
dents especially when f is large. The head of the platoon
(careful driver) slows down frequently because of his large

randomization. Thus, it is highly likely that the succes-
sor vehicle in the platoon (aggressive driver), which has a
weak randomization and high acceleration capability, hits
his predecessor. This can lead to a chain of overreactions
and crashes for all the vehicles of the platoon.

At a higher density (region 2), the transition from the
jamming state to the queueing phase occurs when the frac-
tion f is increased. This transition is usually accompanied
with an increase of the flow. Indeed, the presence of aggres-
sive drivers in the circuit tends to dissolve the jams. These
jams dissolve completely when the fraction f reaches the
value f0. Beyond f0, the flow is constant and the traffic
state is the queueing phase. Thus, the limit f0 should be
the fraction of aggressive drivers where a transition from
jamming to free flow states takes place. The variation of
the probability of car accidents, Pac, can be discussed in
terms of the transition of the traffic states. Let us start
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with the case f = 0. The variation of Pac with the den-
sity can be described as follows. Suppose that the state of
the traffic system is congested. During the transition from
congested to free flow, Pac increases, reaches a maximum
at certain density, ρ0 (ρ0 > ρc(0)), and then decreases.
Recall that, at fixed density, the increasing of f leads to
the transition from jamming to free flow traffic. Hence,
for a fixed density ρ, one can expect the variation of Pac

with f (provided that f < f1) to be as follows. Pac de-
creased with f if ρ is lower than ρ0; but increased, reached
a maximum and then decreased if ρ is greater than ρ0. Sig-
nificantly increasing f (f > f1), causes the queues of pla-
toons become long; leading therefore to an enhancement
of Pac.

At high density (region 3), the traffic state is usually
congested for all values of f . However, with increasing f ,
the jams have a tendency to dissolve which causes an in-
crease of both the flow and the probability of car accidents.
In general, the presence of the aggressive drivers on a high-
way produces some fluidity in the traffic which becomes
more and more important as the fraction f increases.

5 Conclusion

We have investigated numerically the influence of aggres-
sive driving on the properties of the traffic flow model
described by the cellular automata NS rules. Although
the properties of the disorder case and those of pure cases
seem to be qualitatively similar, some detailed investiga-
tions reveal that traffic states change with respect to the
number of aggressive drivers present in the circuit. When
we increase the fraction of aggressive drivers, the traffic
state transits from “ordinary” free traffic to a “queueing”
phase provided that the density of vehicles is very low.
During this transition the flow remains constant but the
probability of car accidents may increase for large f , due
to the presence of platoons. For a higher density, the tran-
sition from congested traffic to a queueing phase may also
occur. This transition is usually accompanied by an in-
crease in the flow. For high density, the traffic state is
congested for all values of f , but the traffic flow as well as
the probability of car accidents increase monotonically.

From realistic traffic, it is very known that aggressive
driving increases not only the traffic flow but also the
number of crashes. This agrees with our findings. However,

the present study shows also that, at low densities, the risk
of crashes could decrease when the fraction f increases.
Strictly speaking, we cannot expect that in real traffic a
fraction of aggressive drivers can reduce the probability of
car accident. We think that the reason for the above unre-
alistic result arises from the fact that we did not introduce
into the model all the aspects connected to aggressive driv-
ing such as exceeding safe speed limits, cutting off other
drivers, etc.
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